Spike and slab empirical Bayes sparse credible sets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Empirical Bayes Analysis (SEBA)

We consider a joint processing of n independent sparse regression problems. Each is based on a sample (yi1, xi1) . . . , (yim, xim) of m i.i.d. observations from yi1 = x T i1βi+εi1, yi1 ∈ R, xi1 ∈ R, i = 1, . . . , n, and εi1 ∼ N(0, σ), say. p is large enough so that the empirical risk minimizer is not consistent. We consider three possible extensions of the lasso estimator to deal with this pr...

متن کامل

Select-and-Sample for Spike-and-Slab Sparse Coding

Probabilistic inference serves as a popular model for neural processing. It is still unclear, however, how approximate probabilistic inference can be accurate and scalable to very high-dimensional continuous latent spaces. Especially as typical posteriors for sensory data can be expected to exhibit complex latent dependencies including multiple modes. Here, we study an approach that can efficie...

متن کامل

Nonlinear Spike-And-Slab Sparse Coding for Interpretable Image Encoding

Sparse coding is a popular approach to model natural images but has faced two main challenges: modelling low-level image components (such as edge-like structures and their occlusions) and modelling varying pixel intensities. Traditionally, images are modelled as a sparse linear superposition of dictionary elements, where the probabilistic view of this problem is that the coefficients follow a L...

متن کامل

Fast Laplace Approximation for Sparse Bayesian Spike and Slab Models

We consider the application of Bayesian spike-andslab models in high-dimensional feature selection problems. To do so, we propose a simple yet effective fast approximate Bayesian inference algorithm based on Laplace’s method. We exploit two efficient optimization methods, GIST [Gong et al., 2013] and L-BFGS [Nocedal, 1980], to obtain the mode of the posterior distribution. Then we propose an en...

متن کامل

Large-Scale Feature Learning With Spike-and-Slab Sparse Coding

We consider the problem of object recognition with a large number of classes. In order to overcome the low amount of labeled examples available in this setting, we introduce a new feature learning and extraction procedure based on a factor model we call spike-and-slab sparse coding (S3C). Prior work on S3C has not prioritized the ability to exploit parallel architectures and scale S3C to the en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2020

ISSN: 1350-7265

DOI: 10.3150/19-bej1119